Feasibility-solvbility theorems for generalized vector equilibrium problem in reflexive banach spaces
نویسندگان
چکیده
منابع مشابه
Strong Convergence Theorems for Bregman Quasi–asymptotically Nonexpansive Mappings and Equilibrium Problem in Reflexive Banach Spaces
The purpose of this article is to propose an iteration algorithm for Bergman quasiasymptotically nonexpansive mapping to have the strong convergence under a limit condition only in the framework of reflexive Banach spaces. As applications, we apply our results to a system of equilibrium problems. The results presented in the paper improve and extend the corresponding results of Reich and Sabach...
متن کاملOn generalized implicit vector equilibrium problems in Banach spaces
Let X and Y be real Banach spaces, K be a nonempty convex subset of X , and C : K → 2Y be a multifunction such that for each u ∈ K , C(u) is a proper, closed and convex cone with intC(u) 6= ∅, where intC(u) denotes the interior of C(u). Given the mappings T : K → 2L(X,Y ,A : L(X, Y )→ L(X, Y ), f1 : L(X, Y )×K×K → Y , f2 : K×K → Y , and g : K → K , we introduce and consider the generalized impl...
متن کاملOn Vector Equilibrium Problem with Generalized Pseudomonotonicity
In this paper, first a short history of the notion of equilibrium problem in Economics and Nash$acute{'}$ game theory is stated. Also the relationship between equilibrium problem among important mathematical problems like optimization problem, nonlinear programming, variational inequality problem, fixed point problem and complementarity problem is given. The concept of generalized pseudomonoton...
متن کاملWeak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces
In this paper, we prove some theorems related to properties of generalized symmetric hybrid mappings in Banach spaces. Using Banach limits, we prove a fixed point theorem for symmetric generalized hybrid mappings in Banach spaces. Moreover, we prove some weak convergence theorems for such mappings by using Ishikawa iteration method in a uniformly convex Banach space.
متن کاملConvergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2012
ISSN: 1687-1812
DOI: 10.1186/1687-1812-2012-38